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Indications of Causal Set Cosmology
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Within the context of a recently proposed family of stochastic dynamical laws
for causal sets, one can ask whether the universe might have emerged from the
quantum-gravity era with a large enough size and with sufficient homogeneity
to explain its present-day large-scale structure. In general, such a scenario would
be expected to require the introduction of very large or very small fundamental
parameters into the theory. However, there are indications that such “fine tuning”
is not necessary, and a large homogeneous and isotropic cosmos can emerge
naturally thanks to the action of a kind of renormalization group associated with
cosmic cycles of expansion and recollapse.

Until as recently as a year ago, it could have been said that we had no
proven method by which to arrive at a dynamical law for causal sets. That
is, the theory remained essentially in a kinematical stage, aside from some
considerations of a very general nature about how a sum-over-histories might
be formulated for causal sets. What has changed the situation is the discovery
of a family of dynamical laws in which the “time evolution” of the causal
set appears as a process of stochastic growth [1]. At a technical level, such
a dynamics may be defined in terms of a Markov process with a time-varying
state space, a process that might be described as the law of motion of a
“stochastic spacetime.” It turns out that relatively little freedom remains once
one postulates a dynamics of this kind: the picture of sequential growth leads
almost uniquely to the dynamical family of ref. 1 provided that one agrees
to honor the discrete analogs of general covariance and (classical) causality.
I will not try to summarize these developments in any detail here, or even
to introduce the causal set idea itself. For that, the reader is referred to refs.
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1 and 2. Rather, I wish to consider briefly the possible implications of some
of these developments for cosmology.

It is true that the “sequential growth dynamics” found in ref. 1 are
classical (nonquantum), and it is true also that one does not know at present
whether any of them leads to something like the Einstein equations, or even
to anything resembling a spacetime at all. On the other hand, directions in
which one might seek their quantum generalization are not hard to discern,
and—still at the classical level—there is available at least one plausible
guess at a choice of growth parameters which might reproduce something
like classical spacetime. In these circumstances, and given the accumulation
of mathematical knowledge concerning at least one special case of these
dynamics, it does not seem out of place to look for indications of how the
theory taking shape might offer its own solutions to some of the recognized
puzzles of cosmology. Specifically, I am thinking of the unexplained “large
numbers” in cosmology related to the large size of the universe and its high
degree of homogeneity and isotropy. (Lurking behind these issues is the
question of why the cosmological constant L is so small. Causal sets so far
have provided at best vague hints of why this should be so, but they have
led to a prediction [3] of fluctuations about L 5 0, and, indeed, fluctuations
of a time-dependent magnitude whose predicted value for the current universe
is just what seems to be indicated by the most recent observations.)

If we suppose that the cosmic microwave radiation we see today is
descended directly from radiation which was present at the conclusion of the
quantum-gravity era,2 then we can straightforwardly evolve present conditions
back to describe the universe (as much as we can see of it) as it was just
after the “Planck time,” by which I mean the time when the Hubble parameter
H 5 ȧ/a was near 1 in natural units. One finds (using the 1/a4 dependence
of the energy density of radiation, and barring any conspiracies involving a
time-varying cosmological constant) that the temperature at that epoch was
also near unity, but the radius of curvature was some 28 orders of magnitude
or more above the Planckian value. This “large number” (which corresponds
to the large ratio of the present-day Hubble radius 1/H to the present-day
wavelength of the microwave background) is one for which current theory
has no convincing explanation.

Only two ways of obtaining such a large number have seemed appealing:
either derive it from some other large number of the underlying theory (which
then has to be explained in its turn)3 or relate it to some conjunctural (i.e.,
historical) number of cosmology whose large size is not in need of explanation,

2 This assumption is denied in “inflationary” scenarios, according to which all matter visible
today was created much later, in a process of “reheating.”

3 For example, the ratio of the Planck mass to the Higgs mass.
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such as the age of the universe or the number of cycles of contraction and
reexpansion it has undergone to date. This second way of proceeding is the
one to which some of the recent causal set results lend themselves.

To understand why, one must know that, despite being representable
formally as a Markov process, a sequential growth dynamics exhibits a long
memory, such that the present effective laws of motion are influenced by
past behavior. (Indeed the process is formally Markovian only because one
includes the entire past in the stochastically evolving “state.”) The passage
of time, according to this dynamics, consists in a sequence of “births” of
new elements of the causal set, each of which comes into being with a definite
set of preexisting “ancestor elements.” The dynamical law is specified by
giving the relative probability of each possible choice of ancestor-set (called
“the precursor” in ref. 1), and this turns out to be given by a relatively simple
expression depending only on the total size Ã of the precursor and the size
m of its maximal layer,4 namely

l(Ã, m) 5 o
k 1Ã 2 m

k 2 m 2tk (1)

where t0, t1, t2, . . . is a sequence of nonnegative “coupling constants” that
completely characterizes the dynamics (and where t0 [ 1). Notice in this
formula how the behavior of the nth element is influenced not only by the
“contemporaneous coupling constant” tn , but by the entire history of t’s up
to that “time.”

Now among the possible choices of the tn , two may be singled out for
special consideration. The first choice,

tn 5 tn (2)

for some fixed t (0 , t , `), is known as transitive percolation and describes
a simplistic, time-reversal invariant dynamics in which the future of each
element is independent of its past and of relatively “spacelike” regions. (See
refs. 1 and 4 for a more complete definition of transitive percolation dynam-
ics.) The second choice,

tn 5
tn

n!
(3)

has been suggested as a candidate which might yield spacetimes with genuine
local degrees of freedom and a more realistic effective law of motion [1].

Let us consider transitive percolation first, since its properties are much
better understood. One knows in particular that, with probability 1, the uni-

4 In other language, Ã is the number of all ancestors and m is the number of “immediate
ancestors” or “parents.”
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verse it describes undergoes an infinite succession of cycles of expansion,
stasis, and contraction punctuated by so called posts [5], each of which serves
as the progenitor of all the elements born in the next cycle. The region issuing
from any such post is independent of what preceded it, and has for its effective
dynamics that of originary percolation, which is the same as plain percolation,
except that no element can be born without having the post among its ancestors
[4; see also ref. 1]. The size to which the region following a post reexpands
is governed by the parameter t, or equivalently the probability p 5 t/(1 1
t). For t ¿ 1, the universe stops expanding at a “spatial volume” of not
much more than 1/t, whose value therefore would have to exceed (say) (1028)3

, 1084 in order to do justice to conditions at the time of the ‘‘big bang,’’
assuming of course, that the dynamics of transitive percolation is at all
relevant to the very early universe.5 The “fine tuning” or “large number”
problem is then why t should have such a small magnitude, rather than a
value near unity.

It is here that the memory effects embodied in (1) enter. Let us suppose
for definiteness that the true dynamics is given by tn 5 tn/n!, and let us also
suppose, for the sake of argument, that an infinite number of posts will occur
for this dynamics as well. What then will be the effective dynamics for the
portion of the causal set following some given post? (I will call this portion the
“current era”.) Let e0 be the post and let it have N0 elements to its past (N0

ancestors). Then, by definition, an element x born in the current era with Ã
current ancestors (including e0) will have in reality Ã 1 N0 ancestors in the
full causal set. On the other hand, its number of parents [maximal elements of
past(x)] will be unaffected by the region preceding e0, since the presence of e0

prevents any element in that region from being an immediate ancestor of x. For
the region, future(e0), we thus acquire an effective dynamics described by weights
l̂(Ã, m) related to the fundamental weights l(Ã, m) by the simple equation

l̂(Ã, m) 5 l(Ã 1 N0, m) (4)

Each cosmic cycle thus acts to renormalize the coupling constants for
the next cycle, and the dynamics in any given cycle differs from the original
or “bare” dynamics by the action of this cosmological “renormalization
group.” It turns out that, when expressed as a transformation of the elementary
coupling constants tn , this action is very simple. For N0 5 1 we have

5 We will see in a moment why this might be the case. The number 1084 assumes that a spacelike
hypersurface in the continuum corresponds to a maximal antichain in the causal set, meaning
a maximal set of causally unrelated elements. It assumes also that the spatial volume of such
a hypersurface is equal, up to a factor of order unity, to the cardinality of the correspond-
ing antichain.
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t̂n 5 tn 1 tn11 (5)

and for N0 5 2, 3, 4, . . . we just iterate this transformation N0 times. (For
originary dynamics, only the ratios of the tn matter. Hence, for all cosmic
cycles after the first, the tn lie in a projective space, and (5), though it appears
linear, is really a projective mapping). Equation (5) seems so simple that one
could hope to analyze it fully, finding in particular all the attractors and their
“basins of attraction.” Potentially such an analysis could pick out as favored
dynamical laws those to which the universe tends to evolve under the action
of the “cosmic renormalization group.” For now, we can note [6] that the
only fixed points of (5) are those of the percolation family, tn 5 tn. (Proof :
In order that ratios tn:tm not be altered by (5), it is necessary and sufficient
that tn 5 ctn for some constant c. But this holds iff tn11 5 tnt with t 5 c 2 1.)

Dou [6] has studied the action of this cosmic renormalization group on (3),
as well as on some other choices of the tn which can be regarded as simple
“deformations” of (2), like tn 5 tnp! n!/(n 1 p)!. For the latter cases he finds
that the “renormalization group flow” defined by (5) leads back to the fixed
point set (2), indicating that percolation is to some degree an “attractor” in the
space of all dynamics. For the former case, the story is more interesting. In the
limit of large N0, and for m2 ¿ N0t, Ã ¿ N0, one finds that l̂(Ã, m) corresponds
to percolation (2) with an N0-dependent parameter t given by

t̂ 5 !t/N0 (6)

The effective dynamics is thus once again transitive percolation, but only for
a limited time,6 and with an effective parameter t that diminishes from one
cosmic cycle to the next.

Now, the germ of a resolution to our cosmological puzzles is contained
in these results. Let us adopt the cosmology of (3) with its single free
parameter taken to be a number of order unity (i.e., no “fine tuning”), and
let us assume that repeated posts occur. After each post, the ensuing cosmolog-
ical cycle will begin with a stage governed by the dynamics (2) with a
parameter t 5 t̂ which diminishes rapidly from cycle to cycle. During each
such stage, the causal set will expand to a spatial volume of at least O(t̂21),
a magnitude which increases rapidly from cycle to cycle. Moreover, it is not
difficult to see that the earliest portion of this percolation stage (that for
which n̂ ¿ t̂21) will be a phase of exponential tree-like growth (a tree being
a poset in which every element but the first has precisely one parent.)7 At

6 The initial phase of effective percolation could not last forever. If it did, we could prove that
another post would occur, whereafter, by (6), we would have to have percolation with a
smaller t, contradicting our original assumption.

7 Computer simulations confirm this tree-like character, and also confirm the deduction [7] that
each node of the tree has about two children (“Cayley tree”).
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the conclusion of each tree-like phase, we will have a homogeneous8 universe
with a “spatial volume” that grows larger with each successive cycle. In other
words, by waiting long enough, we will automatically obtain conditions
very like those needed for the “big bang” in whose aftermath we live. The
“unnaturally” large size with which spacetime began in our particular phase
of expansion would then reflect nothing more than the fact that a sufficiently
great number of causal set elements had accumulated in previous cosmic
cycles.
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